
unix

unix ii

COLLABORATORS

TITLE :

unix

ACTION NAME DATE SIGNATURE

WRITTEN BY April 12, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

unix iii

Contents

1 unix 1

1.1 main . 1

1.2 intro . 2

1.3 cmp . 3

1.4 comm . 3

1.5 compute . 4

1.6 convert . 4

1.7 cut . 5

1.8 date . 6

1.9 dc . 7

1.10 extract . 9

1.11 file . 10

1.12 find . 10

1.13 fold . 12

1.14 head . 13

1.15 ln . 13

1.16 newform . 14

1.17 nl . 15

1.18 paste . 17

1.19 split . 18

1.20 strings . 18

1.21 tail . 19

1.22 tee . 19

1.23 test . 20

1.24 wc . 21

unix 1 / 21

Chapter 1

unix

1.1 main

Intro
Introduction, distribution, disclaimer

cmp
Compare two files

comm Select or reject lines common to two sorted files

compute
Various numeric operations on a file

convert
File conversion filter

cut
Cut out selected fields of each line of a file

date
Print and set the date

dc
Desk calculator

extract
Extract bytes from a file

file
Find file type

find
Find files

fold
Fold long lines for finite width output device

head
Give first few lines

unix 2 / 21

ln
Create a link

newform
Change the format of a text file

nl
Line numbering filter

paste
Merge same lines of several files

split
Split a file into pieces

strings
Find printable strings in a binary file

tail
Deliver the last part of a file

tee
Pipe fitting

test
Condition evaluation command

wc
Word count

1.2 intro

This is a package of some UNIX commands, ported by Denis GOUNELLE.

The original work was made in 1991, and only some minor changes occurs
since then. Last modification was made 16-Apr-94, when I recompiled
all the programs with SAS/C 6.51, fixed a few bugs, and change the doc
to AmigaGuide format.

Any commercial usage or selling without author’s written authorization
is strictly forbidden. You can copy and spread this package under the
following conditions:

- all the files are provided
- the files are not modified in any way
- you don’t charge more than $6 for copy fee

In spite of several tests, no warranty is made that there are no errors
in these commands. YOU USE THIS PACKAGE AT YOUR OWN RISK. In no event will
I be liable for any damage, direct or indirect, resulting of the use of
these commands.

unix 3 / 21

1.3 cmp

NAME
cmp - compare two files

SYNOPSIS
cmp [-r] [-s] file1 file2

DESCRIPTION
The two files are compared. Under default options, cmp makes no
comment if the files are the same; if they differ, it announces
the byte number at which the difference occurred and the two
differing bytes. The differing bytes are printed (first) as an
hexadecimal value and (second) as a character (replaced by a
point if not printable).
If you specify - as file1 or file2, standard input is used.

Options:

-r Reverse comparison (announce bytes that are
the same).

-s Print nothing, return codes only.

RETURN CODES
0 if all went well (files are identicals)
1 in case of bad argument (fatal)
2 if files are differents

CHANGES FROM UNIX
-l option not supported
added -r option
print differences as hexa and character.

1.4 comm

NAME
comm - select or reject lines common to two sorted files

SYNOPSIS
comm [- [123]] file1 file2

DESCRIPTION
comm reads file1 and file2, which must be ordered in ASCII collating
sequence, and produces a three-column output: lines only in file1;
lines only in file2; and lines in both files.

If you specify - as file1 or file2, standard input is used.

Flags 1, 2, or 3 suppress printing of the corresponding column. Thus
comm -12 prints only the lines common to the two files; comm -23
prints only lines in the first file but not in the second; comm -123
prints nothing.

unix 4 / 21

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if at least one file couldn’t be opened (fatal)

CHANGES FROM UNIX
None

1.5 compute

NAME
compute - various numeric operations on a file

SYNOPSIS
compute operation -ffield [-ddelim] [file...]

DESCRIPTION
compute read each line of the named file(s) (or of standard input
if no named file), extract the field-th field of this line (field
separator is delim, default is tab) and perform operation on this
field. When end of file is reached, the result is printed on
standard output.
If you specify "-" as a file name, standard input will be used.

Operations are :

-s summ
-p product
-a average
-g find greatest value
-l find lowest value

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if at least one file couldn’t be opened (non fatal)

CHANGES FROM UNIX
This is not an Unix command !

1.6 convert

NAME
convert - file conversion filter

SYNOPSIS
convert -src -dst

DESCRIPTION
convert is a filter that translate file that are to be tranfered
from a computer to another : standard input (assumed to be in -src

unix 5 / 21

format) is read, converted in -dst format, and send on standard
output.

The -src and -dst specifications can be :

-in9400 in9400 terminal
-amiga Amiga, PT10 laser printer (ECMA-94)
-ibmpc PC, PT10 laser printer (IBM-US)
-pt10rom PT10 laser printer (ROMAN-8)
-mac Macintosh

All lowercase stressed letters are translated, along with a few
special characters. "end of line" and "end of file" marks are
correctly handled and converted.
Non convertible characters are lost, so if you specify same
source and destination format, some characters may disapear...

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)

CHANGES FROM UNIX VERSION
This is not an Unix command !

1.7 cut

NAME
cut - cut out selected fields of each line of a file

SYNOPSIS
cut -clist [file ...]
cut -flist [-dchar] [-s] [file ...]

DESCRIPTION
Use cut to cut out columns from a table or fields from each
line of a file; in data base parlance, it implements the
projection of a relation. The fields as specified by list
can be fixed length, i.e., character positions as on a
punched card (-c option) or the length can vary from line to
line and be marked with a field delimiter character like tab
(-f option). cut can be used as a filter : if no files are
given, the standard input is used. If you specify - as a file,
standard input will be used.

The meanings of the options are:

list A comma-separated list of integer
field numbers (in increasing order),
with optional - to indicate ranges
(e.g.: 1,4,7 or 1-3,8) You can specify
-y for 1-y or x- for x till end, or
even - for all.

-clist The list following -c (no space)
specifies character positions

unix 6 / 21

(e.g., -c1-72 would pass the first
72 characters of each line).

-flist The list following -f is a list of
fields assumed to be separated in
the file by a delimiter character
(see -d); e.g., -f1,7 copies the
first and seventh field only.
Lines with no field delimiters will
be passed through intact (useful
for table subheadings), unless -s
is specified.

-dchar The character following -d is the
field delimiter (-f option only).
Default is tab. Space or other
characters with special meaning to
the shell must be quoted.

-s Suppresses lines with no delimiter
characters in case of -f option.
Unless specified, lines with no
delimiters will be passed through
untouched.

Either the -c or -f option must be specified as the first
command line option.

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if at least one file couldn’t be opened (non fatal)

CHANGES FROM UNIX
Doesn’t complain when a list is x-y and y is greater than x,
but simply exchange values.

1.8 date

NAME
date - print and set the date

SYNOPSIS
date +format
date yy-mm-dd hh:mm:ss

DESCRIPTION
If no argument is given, or if the argument begins with +,
the current date and time are printed. Otherwise, the
current date is set. yy is the last 2 digits of the year
number; the first mm is the month number; dd is the day
number in the month; hh is the hour number (24 hour system);
the second mm is the minute number; ss is the seconds number.
You can specify either date or time, or both :

unix 7 / 21

date 87-05-14 sets date to May 14, 1987
(time unchanged)

date 13:45:00 sets time to 13h45
(date unchanged)

date 87-05-14 13:45:00 sets date to May 14, 1987 and
time to 13h45

If the argument begins with +, the output of date is under
the control of the user. All output fields are of fixed
size (zero padded if necessary). Each field descriptor is
preceded by % and will be replaced in the output by its
corresponding value. A single % is encoded by %%. All
other characters are copied to the output without change.
The string is always terminated with a new-line character.

Field Descriptors :

n insert a new-line character
t insert a tab character
m month of year - 01 to 12
d day of month - 01 to 31
y last 2 digits of year - 00 to 99
D date as mm/dd/yy
H hour - 00 to 23
M minute - 00 to 59
S second - 00 to 59
T time as HH:MM:SS
j day of year - 001 to 366
w day of week - Sunday = 0
a abbreviated weekday - Sun to Sat
h abbreviated month - Jan to Dec
r time in AM/PM notation

RETURN CODES
0 if all when well
1 in case of bad argument (fatal)
4 if date and/or time couldn’t be changed (fatal)

CHANGES FROM UNIX
Format of new date and time is different

BUGS
No checking is done on new time/date values (e.g. "date 91-67-05"
or "date 29:75:00" will work !)

1.9 dc

NAME
dc - desk calculator

SYNOPSIS
dc [file]

unix 8 / 21

DESCRIPTION
dc is an arbitrary precision arithmetic package. Ordinarily it
operates on decimal numbers, but you may specify an input base
or an output base.
The overall structure of dc is a stacking (reverse Polish)
calculator. If an argument is given input is taken from that
file, else standard input is used.

The following constructions are recognized :

number
The value of the number is pushed on the stack. A
number is an unbroken string of the digits 0-9. It
may be preceded by an underscore (_) to input a nega-
tive number.

+ - / * % ^ & |
The top two values on the stack are added (+), sub-
tracted (-), multiplied (*), divided (/), remaindered
(%), powered (^), anded (&), ored(|). The two entries
are popped off the stack; the result is pushed on the
stack in their place.

! The top value on the stack is popped. If non-zero, 1 is
pushed back on the stack, else 0 is pushed.

~ The top value on the stack is popped, inverted, and the
result pushed back on the stack

sr The top of the stack is popped and stored into a
register named r, where r may be any character between
a and z.

lr The value in register r is pushed on the stack. The
register r is not altered. All registers start with
zero value.

d The top value on the stack is duplicated.

p The top value on the stack is printed. The top value
remains unchanged.

f All values on the stack are printed.

q Exits the program.

x Treats the top element of the stack as a character
string and executes it as a string of dc commands.

[...] Puts the bracketed ASCII string onto the top of the
stack.

c All values on the stack are popped.

i The top value on the stack is popped and used as the
number radix for further input.

unix 9 / 21

I Pushes the input base on the top of the stack.

o The top value on the stack is popped and used as the
number radix for further output.

O Pushes the output base on the top of the stack.

k The top value on the stack and used to set the number
of digit displayed after decimal point. By default
precision is set to 0 : dc displays only integer
part.

v The top value on the stack is replaced by its square
root

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if the named file couldn’t be opened (fatal)
3 if no memory could be allocated (fatal)
6 if stack was empty (fatal)
7 if stack was full (fatal)

11 in case of missing bracket (fatal)
14 if you try to compute the square root of a negative number

CHANGES FROM UNIX
P, Q, X, <r, >r, =r, z, Z, and ? operators missing
Registers are not stacks nor strings
[expr] computed when popped
Cannot handle a full expression on the same line
Doesn’t read standard input when EOF reached on named file

1.10 extract

NAME
extract - extract bytes from a file

SYNOPSIS
extract <pos> { <len> | - } [file]

DESCRIPTION
Extract <len> bytes from the given file (or from standard input),
starting to the position <pos>, to the standard output.
If you specify "-" for <len>, data is extracted until end of file.

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if file couldn’t be opened (fatal)
17 if seeking to <pos> failed (fatal)

CHANGES FROM UNIX
This is not an UNIX command !

unix 10 / 21

1.11 file

NAME
file - find file type

SYNOPSIS
file names

DESCRIPTION
file tries to guess the type of each named files. Recognized types
are :

ABackup archive
AmigaBASIC source file
ascii file
Aztec C object file
Aztec C library module
binary file
directory
font header
empty file
executable object
IFF picture
IFF text
IFF music
IFF animation
Lattice C object file
Lharc archive
other IFF file
PowerPacker crunched data
PowerPacker crypted data
Workbench icon
ZOO archive file

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if at least one file couldn’t be opened (non fatal)
3 if memory couldn’t be allocated (fatal)

CHANGES FROM UNIX
File types are obviously differents !

1.12 find

NAME
find - find files

SYNOPSIS
find <name> expression

DESCRIPTION
find recursively descends the directory hierarchy seeking files or
directories that match a boolean expression written in the primaries

unix 11 / 21

given below.
If <name> is a directory name, find starts in the given directory. If
<name> is a file name (or - for standard input), each line of the file
is supposed to be a object name, and the boolean expression is applied
on each of the names.

-name <name> True if <name> matches the current objet name.
You can use "*name" or "name*" to match names
ending or beginning whith "name".

-perm <bits> True if the object permission flags exactly match
given bits (valid bits are any combination of
"arwed"). If <bits> is prefixed by a "+" sign,
the given bits must be set. If <bits> is prefixed
by a "-" sign, the given bits must be cleared.

-type <t> True if the type of the object is <t>, where <t> is
"f" for file and "d" for directory. Under 2.0 system
release, find also recognize "s" for soft links and
"h" for hard links.

-size <n> True if the file size (in bytes) is <n>. If <n> is
prefixed by a "+" sign, returns true if the file size
greater or equal than <n>.

-note <note> True if object note is <note>. Comparison is case-
insensitive, and limited to the number of characters
of <note>.

-exec <cmd> cause the given command to be executed, with {}
replaced by the current object name.
False only if command couldn’t be executed.

-fexec <cmd> same as -exec, but false if command couldn’t be
executed OR if command returned non-zero status, and
true if command returned zero.

-ok [<str>] If no <str> is given, displays the current object
name followed by " (y/n)?", else displays the string
<str>, with {} replaced by the current object name.
Then waits for user answer, and returns true if the
reply was "y", and false if reply was "n" (any other
answer is ignored).

-print Always true; causes the current object name to be
printed.

-printf <fmt> Always true; cause <fmt> to be displayed, with {}
replaced by the current object name.

-newer <file> True if the current object has been modified more
recently than the named <file>.

-depth Always true; causes descent of the directory
hierarchy to be done so that all entries in a
directory are acted on before the directory itself.

unix 12 / 21

-not Reverts the result of the next primary (i.e. false
if next primary is true).

The primaries are evaluated the order in which they are specified,
and evaluation stops as soon as a primary return false.
Multiple occurences of each primary is supported except for -depth.

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if no file matched the boolean expression (non fatal)
3 if some memory couldn’t be allocated (fatal)

CHANGES FROM UNIX
-links, -user, -group, -atime, -mtime, -ctime, -cpio, -mount, and
-local switches not supported
VERY limited pattern matching for -name switch
Amiga -fexec switch correspond to UNIX -exec switch
No -o (or) operators, no parenthesis in expression
Added -printf and -exec switches
Added <str> argument to -ok switch

NOTES
The -exec and -fexec switches will work only if the "Run" command is
in your "C:" directory.
Arguments to -printf, -ok, -exec and -fexec are expanded as follow :

{} current object name
\n new-line character
\t tabulation character
\x x (if x is neither ’n’ nor ’t’)

1.13 fold

NAME
fold - fold long lines for finite width output device

SYNOPSIS
fold [-width] [-pn] [-tn] [file ...]

DESCRIPTION
fold is a filter which will fold the contents of the speci-
fied files (or the standard input if no files are specified)
breaking the lines to have maximum width <width>. The default
for <width> is 80.
If you specify - as a file, standard input is used.

-pn cause fold to add n spaces at the right of the
folded part of the line

-tn set tab stop positions to 1, n+1, 2n+1, etc...

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)

unix 13 / 21

2 if at least one file couldn’t be opened (non fatal)

CHANGES FROM UNIX
Added -p and -t options

1.14 head

NAME
head - give first few lines

SYNOPSIS
head [-count] [file ...]

DESCRIPTION
This filter gives the first count lines of each of the
specified files, or of the standard input. If you specify
- as a file, standard input will be used.
If count is omitted it defaults to 10.

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if at least one file couldn’t be opened (non fatal)

CHANGES FROM UNIX
None

1.15 ln

NAME
ln - create a link

SYNOPSIS
ln [-s] src dst
ln -r src

DESCRIPTION
The first form creates a link named "src" to the file named "dst".
By default it’s a "hard link", but the -s switch allow to create
a "soft link".
The second form examines the link "src" and tells where it point
to.

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if one file couldn’t be opened (fatal)
15 if system release is not 2.0 (fatal)
16 if link couldn’t ne created (fatal)

CHANGES FROM UNIX
added -r option

unix 14 / 21

NOTES
You must have Kickstart 2.04 or greater to use this command

1.16 newform

NAME
newform - change the format of a text file

SYNOPSIS
newform [-s][-in][-on][-bn][-en][-pn][-an][-ck][-ln][-r][-z]

[files...]

DESCRIPTION
newform reads lines from the named files, or the standard input if
no input file is named, and reproduces the lines on the standard
output. Lines are reformatted in accordance with command line
options in effect. Except for -s, command line options may appear
in any order, and may be repeated. Command line options are
processed in the order specified, this means that option sequences
like "-e15 -l60" will yield results different from "-l60 -e15".
Options are applied to all files on the command line. If you
specify "-" as a file name, standard input will be used.

-s Shears off leading characters on each line up to the first
tab and places up to 8 of the sheared characters at the end
of the line. If more than 8 characters (not counting the
first tab) are sheared, the eighth character is replaced by
a * and any characters to the right of it are discarded.
The first tab is always discarded.
An error message and program exit will occur if this option
is used on a file without a tab on each line. The sheared
off characters are saved internally until all other options
specified are applied to that line. The characters are then
added at the end of the processed line.

-in Input tab specification : expands tabs to spaces, according
to the given tab width. n may be 0 to stop tab expansion.

-on Output tab specification : replaces spaces by tabs,
according to the given tab width. n may be 0 to stop space
conversion on output.

-bn Truncate n characters from the beginning of the line when
the line length is greater than the effective line length
(see -l). Default is to truncate the number of characters
necessary to obtain the effective line length. The default
value is used when -b with no n is used.

-en Same as -bn except that characters are truncated from the
end of the line.

-pn Prefix n characters (see -c) to the beginning of a line
when the line length is less than the effective line
length. Default is to prefix the number of characters

unix 15 / 21

necessary to obtain the effective line length.

-an Same as -pn except characters are appended to the end of a
line.

-ck Change the prefix/append character to k. Default character
is a space. If k is missing, space is assumed.

-ln Set the effective line length to n characters. If n is not
entered, -l defaults to 80. The default line length without
the -l option is 80 characters. Note that tabs are
considered to be one character (use -i to expand tabs to
spaces).

-r Delete empty lines at the end of the file.

-z Delete spaces and tabs at the beginning of a line.

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if at least one file couldn’t be opened (non fatal)
13 if there’s no tab in an input line with -s option (fatal)

CHANGES FROM UNIX VERSION
-f option not supported
n cannot be -- for -i and -o option
added -z and -r options

1.17 nl

NAME
nl - line numbering filter

SYNOPSIS
nl [-htype] [-btype] [-ftype] [-vstart] [-iincr]

[-p] [-lnum] [-ssep] [-wwidth] [-nfmt]
[-dxx] [file...]

DESCRIPTION
nl reads lines from the named files, or the standard input if no file
is named, and reproduces the lines on the standard output. Lines are
numbered on the left in accordance with the command options in effect.
nl views the text it reads in terms of logical pages. Line numbering
is reset at the start of each logical page. A logical page consists
of a header, a body, and a footer section. Empty sections are valid.
Different line numbering options are independently available for
header, body, and footer. The start of logical page sections are sig-
naled by input lines containing nothing but the following delimiter
character(s):

Line contents: start of:

\:\:\: header

unix 16 / 21

\:\: body

\: footer

Unless optioned otherwise, nl assumes the text being read is in a
single logical page body. Command options may appear in any order.
If a file name is -, standard input will be used.
The options are:

-btype Specifies which logical page body lines are to be numbered.
Recognized types and their meaning are:

a number all lines
t number lines with printable text only
n no line numbering

Default type for logical page body is t (text lines numbered).

-htype Same as -btype except for header. Default type for logical
page header is n (no lines numbered).

-ftype Same as -btype except for footer. Default for logical page
footer is n (no lines numbered).

-vstart start is the initial value used to number logical page lines.
Default is 1.

-iincr incr is the increment value used to number logical page lines.
Default is 1.

-p Do not restart numbering at logical page delimiters.

-lnum num is the number of blank lines to be considered as one.
For example, -l2 results in only the second adjacent blank
being numbered (if the appropriate -ha, -ba, and/or -fa
option is set).
Default is 1.

-ssep sep is the character(s) used in separating the line number
and the corresponding text line. Default sep is a tab.

-wwidth width is the number of characters to be used for the line
number.
Default number is 6.

-nfmt fmt is the line numbering format.
Recognized values are: ln, left justified, leading zeroes
suppressed; rn, right justified, leading zeroes supressed;
rz, right justified, leading zeroes kept.
Default fmt is rn (right justified).

-dxx The delimiter characters specifying the start of a logical
page section may be changed from the default characters (\:)
to two user-specified characters.

RETURN CODES
0 if all went well

unix 17 / 21

1 in case of bad argument (fatal)
2 if at least one file couldn’t be opened (non fatal)

CHANGES FROM UNIX
Several files can be specified
Two characters must be specified for -d option
pexpr type for -h/-b/-f options is not supported

1.18 paste

NAME
paste - merge same lines of several files or subsequent lines of

one file

SYNOPSIS
paste [-dlist] file...
paste -s [-dlist] file...

DESCRIPTION
In the first form, paste concatenates corresponding lines of the
given input files. It treats each file as a column or columns of a
table and pastes them together horizontally (parallel merging).
In the second form above, paste the function of an older command
with the same name by combining subsequent lines of the input files
(serial merging).
In all cases, lines are glued together with a tab, or with characters
from an optionally specified list. Output is send to the standard
output.

The meanings of the options are:

-d Without this option, the new-line characters of each but the
last file (or last line in case of the -s option) are replaced
by a tab character. This option allows replacing the tab
character by one or more alternate characters (see below).

list One or more characters immediately following -d replace the
default tab as the line concatenation character. The list
is used circularly, i.e., when exhausted, it is reused.
The list may contain the special escape sequences:

\n new-line
\t tab
\ backslash

-s Merge subsequent lines rather than one from each input file.
Use tab for concatenation, unless a list is specified with
-d option.

- May be used in place of any file name, to read a line from
the standard input.

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if at least one file couldn’t be opened (non fatal)

unix 18 / 21

3 if some memory couldn’t be allocated (fatal)

CHANGES FROM UNIX
output lines length not limited
\0 in list not supported
-s option works even with only one file name
result of paste with -s option is not the same (but is more logic
to my mind)

1.19 split

NAME
split - split a file into pieces

SYNOPSIS
split [-n] [-c] [file [name]]

DESCRIPTION
split reads file and writes it in n-line pieces (default 1000
lines) onto a set of output files. The name of the first output
file is name with aa appended, and so on lexicographically, up to
zz (a maximum of 676 files). If no output name is given, x is
default.
If -c option is specified, split counts in characters rather than
in lines (so making pieces of n-characters).
If no input file is given, or if - is given instead, then the
standard input file is used.

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if one file couldn’t be opened, or too much output files (fatal)
3 if memory couldn’t be allocated (fatal)

CHANGES FROM UNIX
name can be longer than 12 characters.
added -c option

1.20 strings

NAME
strings - find the printable strings in a binary file

SYNOPSIS
strings [-o] [-number] [file ...]

DESCRIPTION
strings looks for ascii strings in a binary file. A string is any
sequence of 4 or more printing characters ending with a null.
If the -o flag is given, then each string is preceded by its offset
in the file (in hexadecimal). If the -number flag is given then
number is used as the minimum string length rather than 4.

unix 19 / 21

If no file is specified, or - is specified as a file, standard
input will be used.

RETURN CODES
0 if all went well
1 in case of bad arguments (fatal)
2 if at least one file couldn’t be opened (non fatal)

CHANGES FROM UNIX
-a and - options not supported
offset in hexadecimal (instead of octal)

1.21 tail

NAME
tail - deliver the last part of a file

SYNOPSIS
tail [{+|-}number] [file ...]

DESCRIPTION
tail copies the named files to the standard output beginning at a
designated place. If no file is named, the standard input is used.
If you specify - as a file name, standard input will be used.

Copying begins at distance +number lines from the beginning, or
-number lines from the end of the input (default distance is -10).

Tails relative to the end of the file can require a lot of memory.

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if at least one file couldn’t be opened (non fatal)
3 if memory couldn’t be allocated (fatal)

CHANGES FROM UNIX
No -f option
Distance can’t be specified in blocs nor in characters.
Several files to tail can be named

1.22 tee

NAME
tee - pipe fitting

SYNOPSIS
tee [-a] [file] ...

DESCRIPTION
tee transcribes the standard input to the standard output

unix 20 / 21

and makes copies in the files.
The -a option causes the output to be appended to the files
rather than overwriting them.

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if at least one file couldn’t be opened (non fatal)
3 if memory couldn’t be allocated (fatal)

CHANGES FROM UNIX
-i option not supported.

1.23 test

NAME
test - condition evaluation command

SYNOPSIS
test expr

DESCRIPTION
test evaluates the given expression and, if its value is true, returns
a zero (true) exit status; otherwise, a non-zero (false) exit status is
returned.

All operators, operands and flags, must be separate arguments to the
test command; normally these items are separated by spaces.

The following primitives are used to construct test :

-r objects true if all objects exist and are readable.

-w objects true if all objects exist, and are writable
AND deletable.

-x objects true if all objects exist and are executable.

-f objects true if all objects exists and are files.

-d objects true if all objects exists and are directories.

-s objects true if all objects exists and have a size
greater than zero.

object1 -nt object2 true if object1 is newer than object2.

object1 -ot object2 true if object1 is older than object2.

-z string true if the length of string is zero.

-n string true if the length of the string is not zero.

s1 = s2 true if strings s1 and s2 are identical.

unix 21 / 21

s1 != s2 true if strings s1 and s2 are not identical.

n1 -eq n2 true if the integers n1 and n2 are equal.
Any of the comparisons -ne, -gt, -ge, -lt,
and -le may be used in place of -eq.

RETURN CODES
0 if expression was true
1 in case of bad argument (fatal)
2 if expression was false
3 if memory couldn’t be allocated (fatal)

CHANGES FROM UNIX
-c, -b, -p, -u, -g, -k, and -t switches not supported.
!, -a, -o operators, and parentheses not supported.
several objects can be specified for -r,-w,-x,-f,-d,-s switches

1.24 wc

NAME
wc - word count

SYNOPSIS
wc [-lwc] [names]

DESCRIPTION
wc counts lines, words, and characters in the named files, or in the
standard input if no name appear. It also keeps a total count for all
named files. A word is a maximal string of characters delimited by
spaces, tabs, or newl-ines.

The options l, w, and c may be used in any combination to specify
what subset of lines, words, and characters counts are to be reported.
The default is -lwc.

When names are specified on the command line, they will be printed
along with the counts. If you specify - as a name, standard input
will be used.

RETURN CODES
0 if all went well
1 in case of bad argument (fatal)
2 if at least one file couldn’t be opened (non fatal)

CHANGES FROM UNIX
None

	unix
	main
	intro
	cmp
	comm
	compute
	convert
	cut
	date
	dc
	extract
	file
	find
	fold
	head
	ln
	newform
	nl
	paste
	split
	strings
	tail
	tee
	test
	wc

